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Abstract: This study explores the epitaxial relationship and electrical properties of α-Ga2O3 thin films deposited on a-plane, m-
plane,  and r-plane sapphire  substrates.  We characterize  the  thin  films  by  X-ray  diffraction and Raman spectroscopy,  and eluci-
date  thin  film  epitaxial  relationships  with  the  underlying  sapphire  substrates.  The  oxygen  vacancy  concentration  of α-Ga2O3

thin  films  on  m-plane  and  r-plane  sapphire  substrates  are  higher  than α-Ga2O3 thin  film  on  a-plane  sapphire  substrates.  All
three  thin  films  have  a  high  transmission  of  over  80%  in  the  visible  and  near-ultraviolet  regions,  and  their  optical  bandgaps
stay around 5.02–5.16 eV.  Hall  measurements show that the α-Ga2O3 thin film grown on r-plane sapphire has the highest con-
ductivity of  2.71 S/cm, which is  at  least  90 times higher than the film on a-plane sapphire.  A similar  orientation-dependence is
seen in their activation energy as revealed by temperature-dependent conductivity measurements, with 0.266, 0.079, and 0.075
eV for the film on a-,  m-,  r-plane, respectively.  The origin of the distinct transport behavior of films on differently oriented sub-
strates is  suggested to relate with the distinct  evolution of  oxygen vacancies  at  differently  oriented substrates.  This  study pro-
vides insights for the substrate selection when growing α-Ga2O3 films with tunable transport properties.
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 1.  Introduction

As  an  emerging  third-generation  semiconductor  mate-
rial,  gallium  oxide  (Ga2O3)  has  superior  properties  such  as
wide  band  gap,  high  breakdown  electric  field,  and  strong
radiation  resistance,  which  can  more  effectively  serve  the
emerging  needs  of  power  electronic  device  development,
such  as  Schottky  barrier  diodes  (SBDs)[1, 2],  heterojunction
diodes[3, 4],  metal-oxide  semiconductor  field-effect  transistors
(MOSFETs)[5, 6],  etc.  compared  with  Si,  SiC  and  GaN[5, 7−9].  It
has  a  wide  range  of  application  prospects  in  the  field  of
advanced information technology and new energy.

Ga2O3 has  five  crystalline  phases: α, β, δ, γ and ε.  Among
them,  the  monoclinic  structure β-Ga2O3 is  a  thermally  stable
phase  at  high  temperature,  and  the  other  four  phases  are  all
metastable crystalline phases[10−16]. But, due to the lack of sym-
metry  of  monoclinic β-Ga2O3 compared  with  the  hexagonal
system, there is a problem of "twisting" in the heteroepitaxial,
which is a major difficulty in the crystal quality of heteroepitax-
ial thin films[17]. Compared with β-Ga2O3, the corundom struc-
ture α-Ga2O3 is one of the metastable phases and has a wider
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band  gap  and  higher  breakdown  field  strength,  making  it
more  suitable  for  the  fabrication  of  power  electronic
devices[18].  Both α-Ga2O3 (a = 4.98 Å, c = 13.43 Å)[19] and sap-
phire  (a =  4.76  Å, c =  12.99  Å)  (PDF:  46-1212)  belong  to  a
corundum structure,  and the lattice mismatch between them
is small. Therefore, sapphire is well suited as a substrate for epi-
taxial α-Ga2O3.  We  have  mainly  selected  sapphire  substrates
with  three  different  crystal  orientations:  a-plane  ( ),  m-
plane  ( )  and  r-plane  ( ).  The  study  of  the  electrical
properties  of α-Ga2O3 thin  films  is  an  important  basis  for  the
fabrication  of  high-performance  devices.  However,  the  effect
of  substrate  crystal  orientation  on  the  thin  film  properties
remains contentious,  including the crystalline quality and the
electrical  properties  of  the  thin  films[7, 20−23].  The  anisotropy
of  the electrical  properties  of  Ga2O3 may be follows from the
anisotropy of the long-range electron–phonon interaction,  as
well as from the conduction band anisotropy[24]. On the other
hand, the defects also play a crucial role in the electrical prop-
erties[25].  Therefore,  there  is  a  significant  need  to  investigate
the effect of substrate crystal orientation on the heteroepitax-
ial and electrical properties of the films.

The  main  methods  currently  used  to  grow  Ga2O3 films
are radio frequency magnetron sputtering (RFMS)[25, 26],  metal
organic chemical vapor deposition (MOCVD)[14, 27−29],  molecu-
lar beam epitaxy (MBE)[7, 8].  Compared to the above methods,
pulsed  laser  deposition  (PLD)  has  the  following  outstanding
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advantages:  fast  film  growth,  easy  doping,  easy  preparation
of films with the same stoichiometric ratio as the target,  easy
adjustment of the growth process[10, 11, 13, 30].

In this work,  we have systematically investigated the epi-
taxial  relationships  and  the  differences  in  electrical  proper-
ties  of  epitaxial α-Ga2O3 films  on  a-plane,  m-plane,  and  r-
plane  sapphire  substrates  using  the  PLD  technique.  We
found that the epitaxial films have the same corundum struc-
ture  and  the  growth  orientation  as  the  substrate,  respec-
tively.  The  conductivity  shows  an  increasing  trend  from  a-
plane to m-plane to r-plane, which may be related to oxygen
vacancy.

 2.  Experimental

The  1%  Sn-doped α-Ga2O3 thin  films  were  deposited
with  the  same  growth  condition  on  a-plane,  m-plane,  and  r-
plane  sapphire  substrates  by  PLD  (SKY  Technology  Deve-
lopment  Co.,  Ltd.  Chinese  Academy  of  Sciences),  at  about
800 °C, the oxygen pressure was fixed at 0.1 mTorr. The epitax-
ial  growth  relationship  and  crystalline  structure  of α-Ga2O3

film  were  analyzed  by  X-ray  diffraction  (XRD,  D8  Discover).
The structure of the α-Ga2O3 thin films was also confirmed by
Raman spectroscopy (Renishaw inVia Reflex) at room tempera-
ture  using  a  laser  beam  of  532  nm.  Film  transmission  in  the
range  of  200–800  nm  was  measured  by  a  UV-visible  spec-
trophotometer (UV-vis, Lambda 1050). The elemental composi-
tion and chemical state were characterized by X-ray photoelec-
tron  spectroscopy  (XPS,  Kratos  AXIS  SUPRA)  using  Mg  Kα
(hν = 1253.6 eV) as the excitation source.  The electrode spac-
ing  and  effective  electrode  area  were  controlled  using  a
direct-write  optical  lithography  machine  (MicroWriter  ML3)
and a lift-off process. The electrical properties at room temper-
ature and varies temperatures were measured in the Hall mea-
surement  system  (HL-5500PC)  with  a  0.5  T magnet,  and  in  a
semiconductor parameter analyzer (Keithley 4200-SCS), respec-
tively.

 3.  Results and discussion

The  schematic  diagram  of  different  crystal  planes  in  the
corundom  structure  are  shown  in Fig.  1(a).  The  lattice  mis-
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match  (δ)  is  calculated  according  to  the  following  equation:
δ = ( e – s)/ s.  Here, e and s indicate the lattice constants
of  epitaxial  thin  films  and  substrates,  respectively.  The  lattice
mismatches  between  different  crystal  planes α-Ga2O3 films
and corresponding sapphire substrates are shown in Fig. 1(b).
It is easy to find that the lattice mismatch between r-plane sap-
phire and r-plane α-Ga2O3 of  the long side is  larger  than that
of  the  a-plane and m-plane,  which may be the  reason why it
is more difficult to epitaxy Ga2O3 on r-plane sapphire.
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We  determine  the  crystalline  phase  of  Ga2O3 using  XRD
and  Raman  scattering.  As  shown  in Fig.  2(a),  the  ( )  and
( )  diffraction  peaks  of α-Ga2O3 are  accompanied  by
( )  and  ( )  diffraction  peaks  of  a-plane  sapphire,  the
( )  diffraction  peak  of α-Ga2O3 are  accompanied  by
(30 0)  diffraction  peak  of  m-plane  sapphire,  and  the  ( ),
( )  and ( )  diffraction peaks  of α-Ga2O3 are  accompa-
nied by ( ), ( ) and ( ) diffraction peaks of r-plane
sapphire.  The  structure  of α-Ga2O3 thin  films  is  also  con-
firmed  by  Raman  scattering.  The  XRD θ–2θ scan  patterns  of
the above three samples  all  show that  the crystal  orientation
of the α-Ga2O3 films is almost consistent with the sapphire sub-
strate.
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XRD -scan mode measurements are used to further deter-
mine  the  in-plane  epitaxial  growth  relationship  of α-Ga2O3

film relative to sapphire substrates.  As shown in Fig.  2(b),  the
characteristic  ( )  of  a-plane α-Ga2O3 thin  film  and  ( )
of  a-plane  sapphire  substrate  appear  at  the  same  rotational
angle  of ,  suggesting  that  the α-Ga2O3 thin  film  has  the
same  corundom  structure  as  the  sapphire  substrate.  The
( )  of  the  m-plane α-Ga2O3 thin  film  and  sapphire  sub-
strate,  and  the  ( )  of  r-plane α-Ga2O3 thin  film  and  sap-
phire substrate show similar results to those above.
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Fig.  2(c)  shows  the  Raman  shift  of α-Ga2O3 thin  films
grown  on  a-,  m-,  r-plane  sapphire  substrates.  The  Raman
peaks  belonging  to α-Ga2O3 thin  film  are  mainly  located  at
430.4,  575.8  cm−1,  which  is  consistent  with  reported  valu-
es[31, 32].  The  Raman  results  are  consistent  with  the  XRD
results.  The  XRD  rocking  curves  of  a-plane α-Ga2O3 ( )
peak,  m-plane α-Ga2O3 (30 0)  peak,  and  r-plane α-Ga2O3

( ) peak are shown in Fig. 2(d). The fullwidth at half maxi-

 

Fig. 1. (Color online) (a) Schematic diagram of various crystal planes in the corundom structure. (b) The lattice mismatch between different crys-
tal planes α-Ga2O3 films and corresponding sapphire substrates.
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mum  (FWHM)  of  the ω-scan  rocking  curves  of  ( )  peak,
(30 0) peak, and ( ) peak are 0.34°, 0.57°, and 0.85°, respec-
tively.  This  indicates  that  the  crystalline  quality  of  a-plane α-
Ga2O3 is  greater  at  the  a-plane  than  m-plane  and  r-plane,
which  is  affected  by  multiple  factors,  including  the  different
crystalline quality  of  the substrate with different orientations,
the lattice mismatch,  and the nucleation kinetics for different
orientations[17, 33, 34].

Based  on  the  above  test  results,  it  is  not  difficult  to

deduce the growth behaviors of α-Ga2O3 thin films grown on
differently-oriented  sapphire  substrates.  As  shown  in Fig.  3,
the  unit  cell  arrangement  of α-Ga2O3 thin  films  is  almost  the
same as that of the corresponding sapphire substrates.

Then, we probed the defect density and distribution of dif-
ferently-oriented α-Ga2O3 films using XPS. Fig. 4 shows the O 1s
core level spectra of various plane α-Ga2O3 thin films. We cali-
brate the data with a standard binding energy of 284.8 eV for
the C 1s  peak[35].  The XPS O 1s core level  spectra  of  the films
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Fig. 2. (Color online) (a) XRD θ–2θ full scans of α-Ga2O3 thin films grown on a-plane, m-plane, and r-plane sapphire substrates. (b) XRD -scans of
( ) plane, ( ) plane, and ( ) plane of corresponding α-Ga2O3 films and the underlying sapphire, respectively. (c) Raman scattering spec-
tra of α-Ga2O3 thin films grown on a-plane, m-plane, and r-plane sapphire substrates.  (d) XRD rocking curves around the α-Ga2O3 ( )  peak
grown on a-plane sapphire, α-Ga2O3 ( ) peak grown on m-plane sapphire, and α-Ga2O3 ( ) peak grown on r-plane sapphire.
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are divided into two individual peaks and well  fitted with the
sum Gaussian functions. The positions of the two peaks corre-
spond  to  lattice  oxygen  of  Ga2O3 (OI)  and  oxygen  vacancies
(OII), respectively[26]. We can use OII/(OI+OII) to reflect the con-
centration of oxygen vacancies. The oxygen vacancy concentra-
tion of the a-plane, m-plane, and r-plane α-Ga2O3 are 11.42%,
20.31%, and 19.29%, respectively.

Furthermore,  the  UV-vis  transmission  spectra  for  as
grown α-Ga2O3 epitaxial  films  on  differently-oriented  sap-
phires  are  illustrated  in Fig.  5(a).  Both  films  have  high  trans-

parency (>80%) in the visible  and near-UV regions.  As  shown
in Fig. 5(b), the optical band gap (Eg) of the α-Ga2O3 films can
be  evaluated  using  the  plot  of  (αhν)2 vs hν,  where α is  the
absorption  coefficient  and hν is  the  photon  energy.  a-plane,
m-plane,  and  r-plane α-Ga2O3 films  have  an  estimated
bandgap of 5.16, 5.12, and 5.02 eV, respectively.

In order to explore the electrical transport properties of dif-
ferently-oriented α-Ga2O3 thin films, Hall measurement is per-
formed  in  a  conventional  van  der  Pauw  geometry. Table  1
shows the  results  of  Hall  measurements.  The  conductivity  (σ)

 

Fig. 3. (Color online) Schematic of growth relation of α-Ga2O3 grown on (a) a-plane, (b) m-plane, and (c) r-plane sapphire substrates by PLD.

 

Fig. 4. (Color online) XPS spectra of O 1s peak of α-Ga2O3 films grown on (a) a-plane, (b) m-plane, and (c) r-plane sapphire substrates.

 

Fig. 5. (Color online) (a) Transmittance spectra and (b) Tauc plot of the a-plane, m-plane, and r-plane α-Ga2O3 thin films grown on various plane
sapphire substrates.
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of  the α-Ga2O3 thin  film  epitaxial  on  a-plane  sapphire
exceeds  the  measurement  capacity  of  the  Hall  tester.  For α-
Ga2O3 thin  film  epitaxial  on  m-plane  sapphire,  Hall  measure-
ments  indicate  that  the film is  n-type conductive with a  high
conductivity of  0.29 S/cm, a mobility (μ)  of  12.2 cm2/(V·s)  and
a  carrier  concentration  (n)  of  1.45  ×  1017 cm−3.  While  the α-
Ga2O3 thin film epitaxial on r-plane sapphire has a higher con-
ductivity of 2.71 S/cm, a mobility of 1.35 cm2/(V·s)  and a high
carrier concentration of 1.25 × 1019 cm−3.

The  temperature  dependence  of  the  resistance  in  the
range from 295 to 473 K for  the Sn-doped α-Ga2O3 thin films
are shown in Fig. 6. The activation energy (Ea)  is derived from
the linear fit of the ln(R)–T plot using R ∝ exp (Ea/kBT), where
R is  the  resistance, kB is  the  Boltzmann constant,  and T is  the
temperature[10, 36].  The  estimated  activation  energy  for α-
Ga2O3 epitaxial on a-plane, m-plane and r-plane sapphire sub-
strates  are  0.266,  0.079,  and  0.075  eV,  respectively.  The  value
of  activation  energy  is  used  to  quantify  the  thermal  ioniza-
tion of defect states[28].

The α-Ga2O3 thin  films  on  m-plane  and  r-plane  sapphire
substrates are far more conducting than α-Ga2O3 thin film on
a-plane sapphire substrate under similar thin film growth con-
ditions.  It  is  interesting  that  the  oxygen  vacancy  concentra-
tion of α-Ga2O3 thin films on m-plane and r-plane sapphire sub-
strates are also higher than α-Ga2O3 thin film on a-plane sap-
phire substrates.  It  is  speculated that the conductivity behav-
ior  of α-Ga2O3 thin  films  may  be  related  to  the  oxygen
vacancy  concentration,  and  the  formation  energy  could
strongly  depend  on  the  lattice  orientation,  thus  leading  to
drastical differences in the dopant activation and carrier trans-
port[29, 37, 38].  Further  studies  on  the  mechanism  of  the  effect

of  anisotropy  and  crystallinity  on  electrical  conductivity  are
expected.

 4.  Conclusions

We  have  investigated  the  Sn-doped α-Ga2O3 thin  films
deposited  on  a-plane,  m-plane,  and  r-plane  sapphire  sub-
strates by PLD. Due to the same corundum structure, the out-
of-plane  and  in-plane  alignment  of α-Ga2O3 films  is  almost
identical  to  that  of  the corresponding oriented sapphire  sub-
strate.  The  FWHMs  of ω-scan  rocking  curves  of  the  a-plane,
m-plane,  and  r-plane α-Ga2O3 thin  films  are  0.34°,  0.57°,  and
0.85°, respectively. The r-plane α-Ga2O3 thin film has the high-
est  conductivity,  the  m-plane α-Ga2O3 thin  film  the  second,
and  the  a-plane α-Ga2O3 thin  film  dramatically  more  insulat-
ing. A similar trend is also observed in their activation energy.
This  could  be  understood  by  that  the  orientation  difference
leads to the concentration variation of oxygen defects in differ-
ently  oriented α-Ga2O3 thin  films,  further  causing  differences
in the electrical properties of the thin films.
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